

## 1. Contents

1. Contents 2
2. Information in this document 2
3. General safety instructions 3
4. Product overview 4
5. Initial operation 6
6. Setting the end positions 14
7. Programming with the CSI-15 3-button input unit 17
8. Programming with the LCD monitor 23
9. Navigator (LCD monitor only) 26
10. Overview of functions 28
11. Error messages and rectification 43
12. Technical data 46
13. Maintenance 47
14. Declaration of Incorporation 48
15. Appendix 50

## 2. Information in this document

## Original operating instructions

- Copyright.
- No part of these instructions may be reproduced without our prior approval.
- Subject to alterations in the interest of technical progress.
- All dimensions given in mm.
- The diagrams in this manual are not to scale.

Key to symbols

## DANGER!

Indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

## 1. WARNING!

Indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

## CAUTION!

Indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

## ATTENTION!

Indicates an imminent danger of damage or destruction.

## CHECK

Indicates a check to be performed.

## i reference

Reference to separate documents which must be complied with.

Action request

- List, itemisation

Reference to other sections of this document

## DANGER!

## Failure to comply with the documentation could result in life-threatening danger!

时 Be sure to follow all the safety instructions in this document

## Warranty

The function and safety of the equipment is only guaranteed if the warning and safety instructions included in these operating instructions are adhered to.
MFZ Antriebe GmbH + Co. KG is not liable for personal injury or damage to property if these occur as a result of the warnings and safety advice being disregarded.
MFZ does not accept any liability or warranty for damage due to the use of non-approved spare parts and accessories.

## Use for the intended purpose

The CS255 AC control is only intended for controlling industrial door systems with the use of operators without holding brakes and with mechanical limit switches or an electronic end position system (AWG absolute value encoder).

## Target group

Only qualified and trained electricians may connect, programme and service the control.
Qualified and trained electricians must meet the following requirements:

- knowledge of the general and specific safety and accident prevention regulations,
- knowledge of the relevant electrical regulations,
- training in the use and care of appropriate safety equipment,
- capable of recognising the dangers associated with electricity


## Instructions regarding installation and connection

- The control is designed with $X$ type terminals.
- The system must be disconnected from the electricity supply before carrying out any electrical work. It must be ensured that the electricity supply remains disconnected for the duration of the work.
- Local protective regulations must be complied with.
- Consult the manufacturer before carrying out modifications or replacing the mains connection cable.


## Information concerning operation

- Unauthorised persons (particularly children) should not be allowed to play with permanently installed adjusting or control devices.
- Keep remote controls beyond the reach of children.


## Regulations and bases for testing

For connecting, programming and servicing, the following regulations must be observed (the list is not exhaustive).

Construction product standards

- EN 13241-1 (Products without fire resistance or smoke control characteristics)
- EN 12445 (Safety in use of power operated doors Test methods)
- EN 12453 (Safety in use of power operated doors Requirements)
- EN 12978 (Safety devices for power operated doors and gates - Requirements and test methods)


## EMC

- EN 55014-1 (Radio disturbance, household appliances)
- EN 61000-3-2 (Disturbances in supply systems - harmonic currents)
- EN 61000-3-3 (Disturbances in supply systems - voltage fluctuations)
- DIN EN 61000-6-2 (Electromagnetic compatibility (EMC) Part 6-2: Generic standards - Immunity for industrial environments)
- DIN EN 61000-6-3 (Electromagnetic compatibility (EMC) Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments)


## Machinery Directive

- EN 60204-1 (Safety of machinery, electrical equipment of machines; Part 1: General requirements)
- EN ISO 12100 (Safety of machinery - general principles for design - risk assessment and risk reduction)
- EN 13849-1 (Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design)


## General safety instructions

## Low voltage

- DIN EN 60335-1 (Household and similar electrical appliances - Safety - Part 1: General requirements)
- DIN EN 60335-2-103 (Household and similar electrical appliances - Safety - Part 2-103: Particular requirements for drives for gates, doors and windows)

Committee for Workplaces (Ausschuss für Arbeitsstätten ASTA)

- ASR A1.7 (Technical Regulations for workplaces - Doors and gates)


## 4. Product overview

### 4.1 Versions

The following package options are available for the CS 255 AC control:

- CS 255 AC control integrated in the operator
- CS 255 AC control in Mini housing
- CS 255 AC control in Standard housing

All versions can be fitted with a plug-in module antenna for remote control.

- CS module antenna 868 MHz (article number 1700021228)
- CS module antenna 433 MHz (article number 1700021242)

The following housing options are available:

- Housing with CS-15 3-button input unit
- Housing with ON/OFF key switch
- Housing with main switch
- Housing with Emergency Stop switch

The operating instructions describe the connection and programming options for the version:

- CS 255 AC control with LCD monitor connected and software version 1.06


### 4.2 Programming

Programming the control using the internal 3-button keyboard or the external 3-button input unit of type CSI-15 (article number 120858) only allows a limited number of parameters to be programmed.
$\rightarrow$ "7. Programming with the CSI-15 3-button input unit"

Programming the control using the LCD monitor RS485
(article number 121246) allows access to all parameters.

## NOTICE:

No other display units or input units are compatible with CS 255 AC and these cannot therefore be used.

### 4.3 Main circuit board CS 255 AC

## Key:

XN81: Terminal block for mains connection
XM81: Terminal block for motor
XN88: Terminal block for voltage selection
XB50: Socket for command devices
XR51: Socket for Emergency Stop
XP63: Socket for photocell
XP74: Socket for closing edge safety device and
programmable input 2
XB99: Socket for programmable input 1
XH19: Terminal block for relay output
XV32: Socket for electronic end position system
XV36: Socket for mechanical limit switches
XB72: Socket for CS module antenna
XB11: Connection for CS-15 / CSI-15 3-button input unit
XW40: Connection of LCD monitor or BUS modules

H1: Operational readiness (green)
Lights up when power supply available.
H2: Status message (red)
Lights up in the case of errors or when the safety devices are activated

S1: $\quad$ Programming button (+)
S2: $\quad$ Programming button ( P )
S3: Programming button (-)


## MFZOVITOR

## 5. Initial operation

### 5.1 General

To guarantee that the equipment functions properly, it must be ensured that:

- The door is installed and operational.
- The operator motor is installed and ready for operation.
- The command and safety devices are installed and ready for operation.
- The control housing with the CS 255 AC control is installed.


## i reference

The relevant manufacturers' instructions must be adhered to for the installation of the door, the operator motor, and the command and safety devices.

### 5.2 Mains connection

## Preconditions

To guarantee that the controls function properly, the following points must be ensured:

- The mains voltage must correspond to the voltage stated on the type plate.
- The mains voltage must be the same as the voltage of the operator.
- For three-phase current, a clockwise rotating field is required.
- For a permanent connection, an all-pole main switch must be used.
- For a three-phase connection, only 3-way automatic circuit breakers (10 A) may be used.


## ATTENTION!

## Malfunctions can occur as a result of incorrect

 installation of the control!Before switching on the control for the first time, a check must be carried out after completing the wiring to ensure that all the motor connections on the motor and the control are securely fixed. All control voltage inputs are galvanically isolated from the supply.
The control and load cables of the operators connected must be double insulated along the entire route.

Detailed circuit diagram for mains connection and motor connection (400 V / three phase)


Detailed circuit diagram for mains connection and motor connection(230 V / three phase)


Detailed circuit diagram for mains connection and motor connection (230 V / single phase)


## Key:

M1: Motor
XN81: Terminal block for mains connection
XM81: Terminal block for motor

## NOTICE:

Maximum power input: 1.5 kW

## Connection:

Connect the digital end position system or mechanical limit switches to the control.
Connect the control to the motor.
Connect the control to the mains power supply.
Cable groups must be secured close to their relevant terminals using a cable tie.
$\rightarrow$ "12. Technical data" on page 46

### 5.3 Allocation of connections for absolute value encoder (socket XV32)



A: AWG plugs
B: AWG plug terminal

## XV32 socket (at connection A)



Depending on the operator, cables with either numbered or coloured wires are used for the AWG:
4 (grey): $\quad 12 V_{D C}$
5 (green): Limit switch OPEN
6 (white): Additional limit switch OPEN
7 (yellow): Limit switch CLOSE
8 (pink): Safety circuit output
9 (brown): Additional limit switch CLOSE

Sockets B (absolute value encoder only)


C: Thermal element in door/ gate operator
D: Emergency manual operation (emergency hand crank or emergency hand chain)

## Initial operation

### 5.4 Allocation of connections for mechanical limit switches (socket XV36)



| 4 <br> grey | 7 <br> yellow |
| :---: | :---: |
| 5 <br> pink | 8 <br> green |
| 6 <br> white | 9 <br> brown |

Depending on the operator, cables with either numbered or coloured wires are used for the MEC:
4 (grey): $\quad 12 V_{D C}$
5 (pink): Limit switch OPEN
6 (white): Additional limit switch OPEN

7 (yellow): Limit switch CLOSE 8 (green): Safety circuit output 9 (brown): Additional limit switch CLOSE

## NOTICE:

The free socket (XV32 or XV36) must be fitted with a jumper (part of supply package) since otherwise the internal safety circuit is interrupted.

The end position system will be recognised automatically by the control during initial use. If a change is made at a later date, the relevant end position system must be selected via a parameter setting in input mode.

### 5.5 Connection of command devices

## CAUTION!

Danger of injury due to uncontrolled movement of the door!
A CLOSE command for deadman mode without the door being in sight may be enabled only via input 1 / MOD32 (XB99 / B9-9).
Install command devices for deadman operation in direct sight of the door/gate, but outside the danger area for the user.
If the command device is not a key switch:
nes Install it at a height of at least 1.5 m off the ground.
(18) Install it so as to make it inaccessible to the general public.

## External 3-button input unit

XB50


CLOSE button
OPEN button
STOP button

## NOTICE:

If a STOP button is not connected, the input must be bridged.

External "intelligent" CSI-15 3-button input unit or CS-15 internal 3-button input unit XB11


## NOTICE:

If there is no 3-button-input unit connected, then connection XB11 must be fitted with a jumper.
Otherwise, the control will remain without any function.

Detailed information for programming with the CSI-15
"intelligent" 3-button input unit:
$\rightarrow$ "7. Programming with the CSI-15 3-button input unit"

### 5.6 Connection for safety elements

## Emergency Stop

## XR51



Emergency stop or door/gate
safety circuit

## NOTICE:

If an emergency stop is not connected, the input must be bridged

### 5.7 Connection for closing edge safety devices

The closing edge safety device will be recognised and programmed automatically during initial use and following a RESET. If a closing edge safety device is not connected, the input will be queried every time the power supply is switched on again, until a closing edge safety device is recognised. If a change is made at a later date, the relevant system must be selected via a parameter setting in INPUT MODE.
$\rightarrow$ "10.2 Input operating mode"

Opto-electronic closing edge safety device


OPTO closing edge safety device

[^0]
## Initial operation

Electrical closing edge safety device ( $8.2 \mathrm{k} \Omega$ )

## XP74



Closing edge safety device $8.2 \mathrm{k} \Omega$

Pneumatic closing edge safety device (pressure sensor test)

XP74


Pneumatic closing edge safety device

### 5.8 Connection for photocells

The photocell system will be recognised and programmed automatically during initial operation and following a RESET. If a photocell system is not connected, the input will be queried every time the power supply is switched on again, until a closing edge safety device is recognised. If a change is made at a later date, the relevant system must be selected via a parameter setting in INPUT MODE.
$\rightarrow$ "10.2 Input operating mode"

## Photocell NC



XB50

MFZ two-wire photocell


MFZ two-wire photocell

R: Receiver T: Transmitter

Three-wire NPN photocell

Three-wire PNP photocell

### 5.9 Light curtain connection

Up to two light curtains can be connected to the CS 255 AC. Light curtain 1 is connected to the input of the closing edge safety device and can be either an OSE or PNP system.

## Terminal block X4

Light curtain 1
Version A: OSE (parameter SKS = MOD4)
The connecting cable (A) can be plugged in.


Version B: PNP (parameter SKS = MOD5)
The connecting cable (A) can be plugged in.


[^1]Light curtain 2 (parameter INPUT2 = MOD7)
Light curtain 2 is connected to the programmable INPUT 2 and must be a PNP system.
The connecting cable (A) can be plugged in.


* The resistor ( $30 \mathrm{k} \Omega$ ) is included in the supply package.
br: brown
bl: blue
bk: black
ws: white


## NOTICE:

The light curtain shown as an example in these instructions is the RAY-LG, manufactured by FRABA/CEDES.

## RAY-LG 25xx OSE <br> RAY-LG 15xx PNP

In the case of the PNP system, the resistor ( $30 \mathrm{k} \Omega$ ) is included in the supply package and must be wired into the system without fail.

Testing of the FRABA/CEDES RAY-LG 15xx PNP light curtain takes place cyclically at the upper end position and before every hazardous movement. No relay output is necessary in this case.
No testing is required for the RAY-LG $25 x x$ OSE light curtain.

Drawings from other manufacturers are available on enquiry.

## Initial operation

### 5.10 Connection of programmable inputs

The CS 255 AC control has two programmable inputs, for which various functions can be selected.
$\rightarrow$ "10.2 Input operating mode"

## ATTENTION!

Danger of damage to the circuit board due to incorrect connection!
Inputs 1 and 2 have a different reference potential and they must NOT be operated from the same potential!

either/or

The type of wiring depends on the parameter settings for both inputs in INPUT mode.

### 5.11 Connection arrangement for relay outputs

There is a potential-free relay output available which can be programmed with various types of function.
$\rightarrow$ "10.2 Input operating mode"


Relay switching contact

Relay output

This is a relay output that is potential-free and has a maximum capacity of 4 A at $230 \mathrm{~V} / 1$ ~.

The type of function depends on the parameter setting for the corresponding relay output in INPUT mode.

### 5.12 Connection of CS module antenna

## XB72



## Programming of CS module antenna MB (Multibit)

- Plug CS module antenna MB into XB72.

In INPUT mode, select the parameter RADIO.
四 Select desired MOD and acknowledge with button (P).
The display shows " >>>>".
$\Leftrightarrow$ Press the function button to be programmed on the hand transmitter.
The chosen mode appears in the display as MOD.


Programming of CS module antenna AES (rolling code)
Plug CS module antenna AES into XB72.
In INPUT mode, select the parameter RADIO.
Select the desired MOD and acknowledge with button (P). The display shows " >>>>".
Briefly press the programming button on the underside of the hand transmitter.
\&eg Press the function button to be programmed on the hand transmitter.
The chosen mode appears in the display as MOD.


### 5.13 Connection of LCD monitor RS485 (Article number 121246)

With the LCD monitor, you have complete access to all of the menu settings and parameters of the control.
$\rightarrow$ "8. Programming with the LCD monitor"


### 5.14 Connection of MS BUS modules

The MS BUS function modules allow you to expand the existing functions or add further functions.

- ES module: Evaluation of draw in protection systems
- I/O Module: Input/Output expansion
- GV module: Two-way traffic control


A ES Module
B I/O Module / GV Module

## (i) Reference

For a detailed description of the function and connection of the modules, see the separate documentation for the BUS modules.

## NOTICE:

Connection port XW40 can only be used once. Taking the power consumption into account, however, it is possible to connect several BUS modules and the LCD monitor by using special jumper cables.

## 6. Setting the end positions

### 6.1 Checking the direction of rotation/ direction of travel

A. Using the setting buttons on the circuit board

## Changing to adjustment mode

Keep button (P) pressed for approx. 2 seconds. The red LED flashes rapidly.
唱 Let go of button (P).
The red LED lights up for approx. 2 seconds.
Meanwhile, keep button (P) pressed for approx. 4 seconds. The green LED flashes slowly. The red LED is OFF.

## Checking the direction of travel

ne Press the (+) button. The door should open.
Lef Press the ( - ) button. The door should close.
If correct, continue with setting the end positions. If not, change the direction of travel.

## Changing the direction of travel

Press buttons (+) and ( - ) at the same time for approximately 5 seconds. The red LED lights up for 2 seconds.
Any end positions that have been saved will be deleted. Continue with setting the end positions.
$\rightarrow$ "6.2 Setting the electronic end position system using the setting buttons on the circuit board"
B. Using the CSI-15 3-button input unit
$\rightarrow$ "7. Programming with the CSI-15 3-button input unit"

## C. Using the LCD monitor

## Changing to adjustment mode

Press button (P) until ADJUSTMENT appears.

## Checking the direction of travel

Press the (+) button. The door should open.
Press the (-) button. The door should close.
If correct, continue with setting the end positions. If not, change the direction of travel.

## Changing the direction of travel

[日8 Press buttons ( + ) and ( - ) at the same time and hold for longer than 5 seconds. The display shows "ROT FIELD LEFT". Any end positions that have been saved will be deleted. Continue with setting the end positions.

### 6.2 Setting the electronic end position system using the setting buttons on the circuit board

Carry out the steps in chapter 6.1 A first, then ...
The green LED flashes slowly. The red LED is OFF.

## Setting the OPEN end position

\&os Press the (+/-) buttons to move the door/gate to the desired OPEN end position.
Save the end position setting by pressing button $(\mathrm{P})$ and by additionally pressing the (+) button.
The green LED lights up for 2 seconds.

## Set the CLOSED end position

nof Press the (+/-) buttons to move the door/gate to the desired CLOSED end position.
Save the end position setting by pressing button (P) and by additionally pressing the (-) button.
The green LED lights up for 2 seconds.

After setting the end positions:
res Keep button (P) pressed for $>4$ seconds.
Change to AUTOMATIC mode.

Further settings are also possible using the circuit board buttons (similar to CSI 15 3-button input unit).
$\rightarrow$ „Chapter 7.4 to chapter 7.9"

## N.B.

- Adjustment mode will end automatically after approximately 7 seconds if no key is pressed.
- When carrying out adjustments for the first time, it is necessary to teach-in both end positions. Otherwise, normal operation will not be possible.
- If an end position is corrected, ADJUSTMENT mode can be exited by pressing button ( P ) once the teaching-in of the special end position has been completed.
- After programming the end positions, the teach-in of the system running time is carried out automatically. The functions of the control are the same as in automatic mode.


### 6.3 Setting the electronic end position system using the CSI-15 3-button input unit

$\rightarrow$ "7. Programming with the CSI-15 3-button input unit"

### 6.4 Setting the electronic end position system using the LCD monitor

## ATTENTION!

Damage to property or irreparable damage due to incorrect installation!
The power supply must be switched off before connecting the monitor. Only an MFZ monitor may be used (\#121246).

## Changing to adjustment mode

Press button (P) until ADJUSTMENT appears.

## Setting the OPEN end position

[fors Press the (+/-) buttons to move the door/gate to the desired OPEN end position.
Save the end position setting by pressing button $(\mathrm{P})$ and by additionally pressing the (+) button.
"STORAGE UP" appears in the display.

## Set the CLOSED end position

Press the (+/-) buttons to move the door/gate to the desired CLOSED end position.
Save the end position setting by pressing button (P) and by additionally pressing the (-) button.
"STORAGE DOWN" appears in the display.

Exit adjustment mode by pressing button (P).

## N.B.

- Adjustment mode will end automatically after approximately 7 seconds if no key is pressed.
- When carrying out adjustments for the first time, it is necessary to teach-in both end positions. Otherwise, normal operation will not be possible.
- If an end position is corrected, ADJUSTMENT mode can be exited by pressing button (P) once the teaching-in of the special end position has been completed.
- After programming the end positions, the teach-in of the system running time is carried out automatically. The display shows TEACH IN RUN. The functions of the control are the same as in automatic mode.


### 6.5 Setting the intermediate positions of the electronic end position system using the LCD monitor

In automatic mode, move the door/gate to the desired position
Press the (+/-) button to drive the door to the desired intermediate position (INC.P.OP or INC.P.CL).

## Changing to input mode

\& Press button (P) until INPUT appears.
Press buttons (+) and (-) at the same time for longer than 2 seconds. The first parameter appears in the second line of the display.

## Saving the intermediate OPEN (INC.P.OP) or CLOSE (INC.P.CL) position

Press the (+/-) buttons until the parameter INC.P.OP or INC.P.CL appears.
The current value is A .
Press button (P) to adopt the current door/gate position as an intermediate position.
Save the intermediate position by pressing button (P) again.

## Exiting input mode

Press buttons (+) and (-) at the same time for approx. 1 seconds.
Input mode is exited.
Changing to automatic mode
四 Press button (P) until AUTOMATIC appears.

## N.B.

- If an intermediate position requires to be corrected, the teach-in value can be altered in the INPUT menu or set to A again to allow a new teach-in procedure to be carried out.


## Setting the end positions

### 6.6 Setting the mechanical limit switches

Changing to adjustment mode
Press button (P) until ADJUSTMENT appears.

Setting the OPEN and CLOSED end positions

## i REFERENCE

The procedure for setting the end positions is described in separate documentation for the mechanical limit switches.

Exit adjustment mode by pressing button (P).
N.B.

Adjustment mode is not exited automatically. To return to normal operating mode, adjustment mode must be exited by pressing button (P).

## 7. Programming with the CSI-15 3-button input unit

### 7.1 Overview of CSI-15 3-button input unit with programming function

The programming of the CS 255 AC control can optionally be carried out on the RS485 LCD monitor with clear text display. $\rightarrow$ "8.1 Overview of the LCD monitor"

In addition, the following functions can also be programmed using the CSI-15 "intelligent" 3-button input unit.

- OPEN/CLOSED end position
- Teaching-in of radio hand transmitter
- Open time / Forewarning time / Automatic closing
- Earlier closing after the photocell beam has been interrupted
- Relay function (MOD1, MOD2, MOD6)
- Resetting the control
- Reading out the number of cycles


## ATTENTION!

Damage to property or irreparable damage due to incorrect installation!
The CSI-15 3-button input unit must be in a de-energised state before it is connected. Only a 3-button input unit from MFZ (article number 120858) may be used.


A: LED 1 green
B: LED 2 red
C: Button ( $\boldsymbol{\uparrow}) /$ (OPEN)
D: Button (0) / (STOP)
E: Button ( $\downarrow$ ) / (CLOSE)

After the control has been switched on, it will be in the initialisation phase. The green LED flashes rapidly. The control system is not ready for use. After switching on for the first time, the initialisation phase takes approximately 60 seconds.

## NOTICE:

The same selection of parameters can be programmed using the integrated circuit board buttons.
The programming method is identical.


A: LED 1 green
B: LED 2 red
C: Button (+) / (OPEN)
D: Button (P) / (STOP)
E: Button (-) / (CLOSE)

## Programming with the CSI-15 3-button input unit

### 7.2 Menu structure

The following diagram shows the internal menu structure of the CSI-15 input unit, as well as the required button commands and the ensuing messages, in order to run through the menu.


## NOTICE:

Once the user is inside the menu structure, all parameters need to be run through in turn. It is possible to revert to automatic mode at any time by pressing button (0) for approximately 4 seconds.

After switching on the control for the first time, or after a RESET, the control enters the initialisation phase. The green LED flashes rapidly.
The control system is not ready for use. After switching on for the first time, the initialisation phase takes approximately 60 seconds.
It then automatically selects ADJUSTMENT mode.
The green LED flashes slowly.

### 7.3 Checking the direction of rotation

## Changing to adjustment mode

Keep button (0) pressed for approx. 2 seconds.
The red LED flashes rapidly.
Let go of button (0).
The red LED lights up for approx. 2 seconds.
Meanwhile, keep button (0) pressed for approximately 4 seconds.
The green LED flashes slowly. The red LED is OFF.

## Checking the direction of travel

Press the button ( $\boldsymbol{\uparrow}$ ). The door should open.
Press the button $(\boldsymbol{\downarrow})$. The door should close. If correct, continue with setting the end positions.

## Changing the direction of travel

Press button $(\boldsymbol{\uparrow})$ and $(\boldsymbol{\downarrow})$ at the same time for longer than 5 seconds.
The green LED lights up and remains ON. The red LED is OFF. Any end positions that have been saved will be deleted. Continue with setting the end positions.

### 7.4 Set the CLOSED end position (ADJUSTMENT)

The green LED flashes slowly.
The red LED is OFF.

## Setting the OPEN end position

Le8 Press buttons ( $\boldsymbol{\uparrow} / \boldsymbol{\downarrow}$ ) to move the door/gate into the desired OPEN end position.
Save the end position setting by pressing button (0) and by additionally pressing button ( $\boldsymbol{\uparrow}$ ).
After letting go of both buttons, the green LED lights up for 2 seconds.

## Setting the CLOSED end position

Resp buttons ( $\boldsymbol{\uparrow} / \boldsymbol{\downarrow}$ ) to move the door/gate to the desired CLOSED end position.
Save the end position setting by pressing button (0) and by additionally pressing button ( $\downarrow$ ).
The green LED lights up for 2 seconds.

The RADIO parameter is selected automatically once the end positions have been set.

- The green LED flashes twice slowly.
- The red LED is OFF.
- The RADIO parameter is selected.


## N.B.

- Adjustment mode will end automatically after approx. 7 seconds if no key is pressed.
- When carrying out adjustments for the first time, it is necessary to teach-in both end positions. Otherwise, normal operation will not be possible.
- If an end position is corrected, the ADJUSTMENT menu can be exited by pressing button (0) once the teaching-in of the special end position has been completed.
- After programming the limit switches, the teach-in of the system running time is carried out automatically. The functions of the control are the same as in automatic mode.


### 7.5 Teaching-in the radio hand transmitter (RADIO)

The green LED flashes twice slowly.
The red LED is OFF.
ne Press button (0).
The green LED flashes rapidly (ready for teaching-in procedure).
The red LED is OFF.
\& Press the button on the handset which is to subsequently carry out the command.
The green LED lights up for 2 seconds.
The red LED is OFF.
The teaching-in procedure for the hand transmitter has successfully been completed.

Followed by automatic change to AUT.CLOSE parameter.

- The green LED flashes slowly three times.
- The red LED is OFF.
- The AUT.CLOSE parameter is automatically selected.

Immediate change to next parameter AUT. CLOSE without teaching-in a radio hand transmitter.
Press the (0) button.
The green LED flashes rapidly (ready for teaching-in procedure).
The red LED is OFF.
Press the (0) button.
The red LED flickers for 2 seconds.
The green LED is OFF.
Automatic change to AUT.CLOSE parameter.

- The green LED flashes slowly three times.
- The red LED is OFF.
- The AUT.CLOSE parameter is automatically selected.

Immediate change to next parameter RADIO without correcting a position:
Pe Pressing button $(0)>1$ second

The parameter then changes automatically to the RADIO parameter.
The green LED flashes twice slowly. The red LED is OFF.
The RADIO parameter is selected.

## Programming with the CSI-15 3-button input unit

### 7.6 Automatic closing after elapse of time (AUT. CLOSE)

The green LED flashes slowly three times.
The red LED is OFF.

Press button (0).
The first setting (MOD1) is displayed.

Buttons ( $\boldsymbol{\uparrow}$ ) and $(\boldsymbol{\downarrow})$ can be used to scroll through the list of modes.

## MOD1:

The green LED is OFF, the red LED flashes rapidly. No automatic closing.

## MOD2:

The green LED is OFF, the red LED flashes rapidly twice.
Automatic closing is active.
Open time $15 \mathrm{~s}+$ forewarning time 5 s .

## MOD3:

The green LED is OFF, the red LED flashes rapidly 3 times. Automatic closing is active.
Open time $30 \mathrm{~s}+$ forewarning time 5 s .

## MOD4:

The green LED is OFF, the red LED flashes rapidly 4 times.
Automatic closing is active.
Open time $60 \mathrm{~s}+$ forewarning time 5 s .

Button (0) is used to save the selected MOD.

- The green LED lights up for 2 seconds.
- Followed by automatic change to FAST CL. parameter.
- The green LED flashes slowly 4 times.
- The red LED is OFF.
- The parameter FAST CL. is selected.


### 7.7 Earlier closing after the photocell beam has been interrupted (FAST CL.)

The green LED flashes slowly 4 times.
The red LED is OFF.

```
L\mp@code{Press button (0).}
The first setting (MOD1) is displayed.
```

Buttons $(\boldsymbol{\uparrow})$ and $(\boldsymbol{\downarrow})$ can be used to scroll through the list of modes.

## MOD1:

The green LED is OFF, the red LED flashes rapidly.
The open time elapses in the normal way.

## MOD2:

The green LED is OFF, the red LED flashes rapidly twice.
The open time is aborted after the photocell beam has been interrupted; automatic closing starts.

## MOD3:

The green LED is OFF, the red LED flashes rapidly 3 times. The open time is aborted after the photocell beam has been interrupted; automatic closing starts.
The interruption must last at least 2 seconds

Button (0) is used to save the selected MOD.

- The green LED lights up for 2 seconds.
- Followed by automatic change to RELAY parameter.
- The green LED flashes slowly 5 times.
- The red LED is OFF.
- The RELAY parameter is selected.


### 7.8 Relay output function

The green LED flashes slowly five times
The red LED is OFF

The CSI-15 input unit can only be used to select and programme 3 of the 44 functions.

Le: Pressing button (0).
The factory setting (MOD2) is displayed.

Buttons $(\boldsymbol{\uparrow})$ and $(\boldsymbol{\downarrow})$ can be used to scroll through the list of modes.

## MOD1:

The green LED is OFF, the red LED flashes rapidly.
Red traffic light function
Flashing during forewarning,
lit up during door run

## MOD2:

The green LED is OFF, the red LED flashes rapidly twice.
Red traffic light function
Flashing during forewarning,
flashing during door run

## MOD6:

The green LED is OFF, the red LED flashes rapidly three times. OPEN end position query
The relay is active when the OPEN end position is reached

Button ( 0 ) is used to save the selected MOD.

- The green LED lights up for 2 seconds.
- The parameter then changes automatically to the RESET parameter
- The green LED flashes slowly six times
- The red LED is OFF
- The parameter RESET is selected


### 7.9 Resetting all settings to factory default settings (RESET)

The green LED flashes slowly 6 times.
The red LED is OFF.

Le Press button (0).
The first setting (OFF) is displayed.

OFF: The red LED flashes briefly ( 0.1 second). No reset to factory default settings.
ON: The red LED flashes slowly. Complete reset of the control

Button (0) is used to save the selected MOD.

## Selection OFF:

The red LED flickers for 2 seconds and no control reset is carried out.
Followed by automatic change to CYCLE parameter

- The green LED flashes slowly 7 times.
- The red LED is OFF.
- The CYCLE parameter is selected.


## Selection ON:

All settings are reset to the factory default settings. Followed by automatic change to ADJUSTMENT parameter The end positions must be set again initially.

## Programming with the CSI-15 3-button input unit

### 7.10 Reading out the cycle counter (CYCLE)

The green LED flashes slowly 7 times.
The red LED is OFF.

Hef Press button (0).
The current number of cycles is displayed as a separate flashing signal for each single digit place.

Order of display:
O_T_H_O Th_T Th_H Th

Display:
0 - RED flashes briefly ( 0.1 second)
1 - RED flashes slowly 1 x
2 - RED flashes slowly 2 x

The change from one digit place to another is shown by a single flash of the green LED.
After all places have been run through, the display starts again with the units digit. This change is displayed by the green LED lighting up for 3 seconds.

Change back to AUTOMATIC:
\& Press button (0).

Direct change to the next parameter AUTOMATIC without reading out the cycle counter.
ne8 Press button (0) for longer than 4 seconds:
The green LED lights up
The red LED is OFF.
The system has now reverted to automatic operating mode.

### 8.1 Overview of the LCD monitor

## ATTENTION!

Damage can occur through improper installation! The mains power supply must be switched off before connecting the display unit. Only an MFZ display unit (article number 121246) may be used.


## Key:

A: Mode of operation / Diagnostics info
B: Parameters / Diagnostics info
C: Button (+)
D: Button (-)
E: Button (P)
F: Value / Status
G: Value / Status
H: Jumper

If jumper H is removed, the (+) button, the (-) button and the $(P)$ button have no function.
The display still functions.

After the control has been switched on, it will be in the initialisation phase. The display will indicate "PLEASE WAIT". The control system is not ready for use. After switching on for the first time, the initialisation phase takes approximately 60 seconds.

### 8.2 LCD monitor, modes of operation

The control has four modes of operation with the LCD monitor:

1. AUTOMATIC
2. ADJUSTMENT
3. INPUT
4. DIAGNOSIS

ADJUSTMENT, INPUT and DIAGNOSIS modes are exited automatically 7 seconds after the last button was pressed. The control then goes into AUTOMATIC mode.

## Operating mode 1: AUTOMATIC

The door/gate system is operated in the AUTOMATIC operating mode.

## Display:

- Displays the action being carried out
- Displays any error messages

If the "PRESS/REL" parameter is set to MOD2-6 in the input menu, the display changes from AUTOMATIC to MANUAL.

## Operating mode 2: ADJUSTMENT

ADJUSTMENT mode is used for setting the OPEN/CLOSED end positions.

## ATTENTION!

## Malfunctions can occur as a result of incorrect operation of the control!

In ADJUSTMENT mode, the door will not stop automatically when it reaches the end position if an electronic end position system (AWG) is used. The door can be damaged if driven beyond the end position.

Fine adjustments can be made in the INPUT operating mode.

## Display:

- The current end position value is shown


## Programming with the LCD monitor

## Operating mode 3: INPUT

In the INPUT operating mode, the values of various parameters can be altered.

Display:

- Displays the selected parameter
- Displays the programmed value / current status


## Operating mode 4: DIAGNOSIS

In the DIAGNOSIS operating mode, door-specific checks can be queried.

Display:

- Displays the checks
- Displays the status of the checks


### 8.3 Initialisation / Reset

The following components will be recognised and taught-in automatically during initial operation and following a RESET:

- End position system
- Closing edge safety device
- Photocell system
- Input 2 (wicket door sensor)

During this process (approximately 60 seconds) the green LED flashes rapidly and the top line of the display shows the message "PLEASE WAIT".
It is not possible to operate the system during this process.
Components can be changed or added at a later date using the LCD display or by reinitialising the system.
If one of the components has not yet been connected, this will be indicated by "A" in the display.
This component will be searched for if any further initialisation procedure is carried out. If this component is recognised, the system automatically switches to the appropriate adjustment mode.

## Exception:

Input 2 remains inactive (MOD1) if no $8.2 \mathrm{k} \Omega$ resistance was recognised the first time that initialisation was carried out.

### 8.4 RESETTING the control using the LCD monitor

## Switching to INPUT mode.

Press button (P) until "INPUT" appears in the display.
Press buttons (+) and (-) for longer than 2 seconds to activate the Input.

## Resetting the control

Press the (+/-) buttons until the "RESET" parameter appears in the display.
The value is set to "OFF".
Press the (P) button until the display flashes.
Press the (+) button until MOD3 appears in the display.
Press button (P) to begin the RESET.

The initialisation phase takes place, and all of the safety components that are connected and the end position system are automatically taught in.

## Changing to adjustment mode

$\rightarrow$ "6.4 Setting the electronic end position system using the LCD monitor"

## Changing to automatic mode

Press button (P) until "AUTOMATIC" appears in the display.

### 8.5 RESETTING the control without an LCD monitor (only using internal circuit board buttons)

Disconnect the system from the power supply.
Press the circuit board buttons ( P ) and ( - ) at the same time and keep them pressed.
(1) Switch the power supply back on again.

Press the circuit board buttons ( P ) and ( - ) at the same time and keep them pressed until the red LED (H2) flashes quickly.
Release the circuit board buttons $(P)$ and ( - ).
The green LED (H1) flashes slowly.
The initialisation phase takes place (approximately 60 s ).
While initialisation is being carried out, it is not possible to programme or operate the system.
The rapid flashing of the green LED changes to slow flashing. The system is in ADJUSTMENT mode.

Once initialisation has been successfully completed, the end positions have then been deleted and all parameters have been reset to their factory default settings.

## MFZOVITOR

## 9. Navigator (LCD monitor only)



| RUNNINGTME | A |
| :--- | ---: |
| REVERS.TIME | 300 |
| LIMIT SW. | A |
| SELF LOCK | MOD1 |
| POWER | 10 |
| RESET MSBUS | OFF |
| RESTART | OFF |
| FACTORY SET. | 99 |
| RESET | OFF |
| PIN No.2 | 1111 |
| SERVICE | OfF |



| UPPER SWITCH |
| :--- |
| LOWER SWITCH |
| UP-SWITCH |
| DOWN-SWITCH |
| INPUT 1 |
| INPUT 2 |
| SKS |
| SKS 2 |
| STOP 2 |
| IMPULS INPUT |
| SWITCH CLOCK |
| LIGHT BARR. |
| LIGHT BARR2 |
| SAFETY CIRC. |
| STOP |
| ROT FIELD |
| CYCLE |
| SERVICE |
| AWG |
| Ertror Memory |

g

## 10. Overview of functions

### 10.1 Automatic operating mode

| Display |  | Description |
| :---: | :---: | :---: |
| AUTOMATIC TEACH IN RUN |  | Automatic teach-in of the running time. |
| AUTOMATIC OPENING |  | The door is in the opening phase. |
| AUTOMATIC CLOSING |  | The door is in the closing phase. |
| AUTOMATIC STANDBY |  | The door is at an intermediate position. |
| AUTOMATIC STANDBY | 0 | The door is at the OPEN end position. |
| AUTOMATIC STANDBY | 0 | The door is at the part OPEN position ("INC.P.OP" or "Intermediate OPEN position" parameter). |
| AUTOMATIC STANDBY | U | The door is at the CLOSED end position. |
| AUTOMATIC STANDBY | u | The door is at the part CLOSED position ("INC.P.CL." or "Intermediate CLOSED position" parameter). |
| AUTOMATIC STANDBY | r | The door is in the reversing switch-off position. |
| AUTOMATIC <br> PERMANENT INPUT |  | A signal is permanently displayed. This can be a command device or a programmable input. This constitutes an invalid state under any circumstances. This state is probably caused by a faulty component which needs to be replaced. <br> Exception: An exception to this is if the signal comes from the pluggable timer or the programmed input 1 when this is set to a timer function (MOD4) or fire alarm function (MOD5-9, 13). |

If the "SELF LOCK" parameter is set to MOD2, 3, 4, 5 or MOD6 in the input menu, the display changes from AUTOMATIC to MANUAL.

| Display | Description |
| :--- | :--- |
| MANUAL <br> MAIN UP | The door is in the opening phase. |
| MANUAL <br> MAIN DOWN | The door is in the closing phase. |
| MANUAL <br> STANDBY | The door is at an intermediate position. |

### 10.2 Input operating mode

| Function | Description | Setting options | Factory settings |
| :---: | :---: | :---: | :---: |
| DEUTSCH | Select the menu language. <br> Only possible using the LCD monitor: <br> Alternatively, the menu language can also be selected during the initialisation phase (during initial operation or after a reset). The menu language pre-set in the factory (DEUTSCH) appears here for approximately 60 seconds as flashing text in the display. At this point, the menu language can still be changed during the initialisation procedure. <br> Pressing buttons [+] or [-] will allow you to scroll through and select a language. Save the language you have selected by pressing button [P]. <br> After this, all texts or messages displayed are shown in the language that you have selected. | DEUTSCH <br> ENGLISH <br> FRANCAIS <br> NEDERLANDS <br> DANSK <br> ESPANOL <br> POLSKI <br> CESKY <br> ITALIANO <br> SUOMI <br> SVENSKA <br> TÜRKÇE <br> NORSK <br> MAGYARUL | DEUTSCH |
| FINE-UP | Fine adjustment of the OPEN end position in relation to the saved OPEN end position (ES-OPEN). <br> Only visible if an electronic end position system is used. | $-250-250$ | 0 |
| FINE-DOWN | Fine adjustment of the CLOSED end position in relation to the saved CLOSED end position (ES-CLOSE). <br> Only visible if an electronic end position system is used. | -250-250 | 0 |
| INC.P.OP | Setting the switching point for the intermediate OPEN position (Part OPEN) in relation to the saved OPEN end position. Displayed as a negative value. <br> Only visible if an electronic end position system is used. <br> Automatic teach-in of position: <br> $\rightarrow$ "6.5 Setting the intermediate positions of the electronic end position system using the LCD monitor" | $\begin{aligned} & \text { A (teach-in) } \\ & -1 \text { - ES-CLOSE } \end{aligned}$ | A |
| INC.P.CL | Setting the switching point for the intermediate CLOSE position (Part CLOSED) in relation to the saved CLOSED end position. Displayed as a positive value. <br> Only visible if an electronic end position system is used. <br> Automatic teach-in of position: <br> $\rightarrow$ "6.5 Setting the intermediate positions of the electronic end position system using the LCD monitor" | A (teach-in) <br> 1 - ES-OPEN | A |
| OPEN TIME | After the door/gate has opened, it runs back automatically in the CLOSE direction after the set time has elapsed. <br> N.B.: <br> If you press the CLOSE button during the open time, the closing run starts immediately. If you press the OPEN or STOP button during the open time, the time starts counting from the beginning again. <br> If an automatic closing movement is interrupted by the SKS, the open time is added on with each new attempt. After 3 attempts, the automatic closing process will be aborted automatically. | $\begin{aligned} & \text { OFF, } \\ & 1-3600 \mathrm{~s} \end{aligned}$ | OFF |
| START WARN. | The start warning is carried out before each run. | OFF, $1-10 \mathrm{~s}$ | OFF |
| FOREWARNING | The forewarning is activated before an automatic closing run starts and before closing in impulse mode. <br> N.B.: This time is added to the start warning. | $\begin{aligned} & \text { OFF, } \\ & 1-300 \mathrm{~s} \end{aligned}$ | OFF |

MFZOVITOR
Overview of functions

| Function | Description | Setting options | Factory settings |
| :--- | :--- | :--- | :--- |
| AUT.CLOSE | Automatic closing after the open time has elapsed.  <br> MOD1: AUT.CLOSE from OPEN end position <br> MOD2: AUT.CLOSE from part OPEN end position <br> MOD3: AUT.CLOSE from OPEN end position and part OPEN end position <br> MOD4: AUT.CLOSE from a/l door/gate positions | MOD1 - MOD4 | MOD1 |
| FAST CL. | Earlier closing after the photocell beam has been interrupted. |  |  |
| Requirements: |  |  |  |

RELAY $1 \quad$ Select a function to be assigned to the relay output.
Further explanations:
$\rightarrow$ "Explanation of the relay modes:" on page 35
MOD1: (Red traffic light 1) flashes during forewarning and is ON during door run
MOD2: (Red traffic light 2) flashes during forewarning and during door run
MOD3: (Red traffic light 3) is ON during forewarning and during door run
MOD4: Impulse signal when OPEN command is given from inside
MOD5: Error message
MOD6: OPEN end position
MOD7: CLOSED end position
MOD8: OPEN end position negated
MOD9: CLOSED end position negated
MOD10: Intermediate OPEN position
MOD11: Intermediate CLOSE position
MOD12: Intermediate CLOSE position to CLOSED end position
MOD13: Magnetic lock function
MOD17: SKS activated or test error
MOD18: (Red traffic light 4) flashes during forewarning and is OFF during door run
MOD19: Intermediate OPEN position to OPEN end position
MOD21: Test of draw-in protection before opening run (additional module required)
MOD22: Activation of radio transmission systems 1 and 3 and/or light curtain testing
MOD23: (Green traffic light) is ON at OPEN end position, OFF during forewarning and OFF during door run
MOD24: Capacitor switching for 230 V/1~ sectional-door operators
MOD25: Yard light function, light stays on for 2 minutes after OPEN impulse/ command
MOD26: Activation of radio 2 transmission system
MOD27: Impulse signal when OPEN end position is reached
MOD28: Relay generally OFF
MOD29: Door opens
MOD30: Door closes
MOD31: Service, continuous signal once the pre-set maintenance interval is reached
MOD34: Fire alarm signal (fire detection and alarm system (BMA) active)
MOD35: Photocell operative
MOD36: Wicket door locking cylinder
MOD37: Testing of stop signal through radio transmission systems 1 and 3
MOD38: Testing of light curtain 2 (input 2)
MOD39: LED error
MOD40: Impulse signal when OPEN command is given from outside
MOD41: Test of radio transmission system 4 in OPEN direction
MOD43: Drive runs in OPENING or CLOSING direction


## Overview of functions



| Function | Descrip |  | Setting options | Factory settings |
| :---: | :---: | :---: | :---: | :---: |
| INPUT 1 | Select a fun MOD1: MOD2: MOD3: MOD4: MOD5: MOD6: MOD7: MOD8: MOD9: MOD10: MOD11: MOD12: MOD13: MOD14: MOD15: MOD16: MOD17: MOD30: MOD31: MOD32: | nction to be assigned to Input 1 (XB99 / 1+2). <br> Part OPEN button <br> Part OPEN switch <br> AUTO CLOSE switch <br> External CLOCK (continuously OPEN) <br> Fire alarm (BMA) switch 3 (partial opening) NO <br> Fire alarm (BMA) switch 1 (emergency closing) NO <br> Fire alarm (BMA) switch 1 (emergency closing) NC <br> Fire alarm (BMA) switch 2 (emergency opening) NO <br> Fire alarm (BMA) switch 2 (emergency opening) NC <br> Ventilation button (partial opening) NO <br> Automatic closing button <br> Laser scanner (special solution) <br> Fire alarm (BMA) switch 3 (partial opening) NC <br> Wicket door lock <br> Photocell 2 NC <br> Forewarning switch <br> Impulse button <br> OPEN button inside <br> OPEN button outside <br> CLOSE button (Only active with operational closing edge safety device and operational Photocell 1. No function in deadman mode) | MOD1 - MOD32 | MOD1 |
| INPUT 2 | Select a fu OFF: MOD2: <br> MOD3: <br> MOD4: <br> MOD5: <br> MOD6: <br> MOD7: <br> During initia no connec OFF appea | nction to be assigned to Input 2 (XP74 / 2+5). <br> NOT active <br> Wicket door sensor $8.2 \mathrm{k} \Omega$ <br> Stop if there is deviation <br> Closing edge safety device OPEN $8.2 \mathrm{k} \Omega$, active in the OPEN direction <br> Stop and reverse when triggered <br> Closing edge safety device $8.2 \mathrm{k} \Omega$, active in the OPEN direction <br> Stop and short reversal when triggered <br> Battery mode <br> Radar motion detectors (special solution) <br> Light curtain 2 (PNP) <br> al operation and after a reset, Input 2 will be set once to A - (teach-in). If ed components are recognised, the input will be automatically deactivated. s in the display and the input must be manually activated. | A - (teach-in) OFF MOD2 - MOD7 | A |
| RUNNINGTIME | Monitori <br> The runn In the ev After the | the maximum running time for an OPEN or CLOSE movement. g time is determined automatically during the teach-in run. t of a 20\% deviation (in both directions) an ERROR RUNTIME appears. utomatic teach-in, the running time can be manually changed. | $\begin{aligned} & \text { A - (teach-in) } \\ & \text { OFF } \\ & 1-300 \mathrm{~s} \end{aligned}$ | A |
| REVERS.TIME | Motor st When th turnarou | page time each time the door changes direction. <br> closing edge safety device is triggered during the closing movement, the time amounts to a quarter of the programmed time. | $\begin{aligned} & 100- \\ & 5000 \mathrm{~ms} \end{aligned}$ | 300 |
| LIMIT SW. | Select the <br> MOD1: <br> MOD2: | end position system to be evaluated. <br> Absolute value encoder (AWG) <br> Mechanical limit switch (MEC) | A - (teach-in) <br> MOD1 - MOD2 | A |
| SELF LOCK | Choose be edge safety <br> MOD1: <br> MOD2: <br> MOD3: <br> MOD4: <br> MOD5: <br> MOD6: | tween impulse and manual operation, with or without evaluation of closing device (CESD) and photocell system (LB). <br> Automatic operation <br> Manual operation for OPEN + CLOSE with SKS and LB evaluation Manual operation for CLOSE with SKS and LB evaluation Manual operation for OPEN with SKS and LB evaluation Manual operation for OPEN + CLOSE without SKS and LB evaluation Manual operation for CLOSE without SKS and LB evaluation | MOD1 - MOD6 | MOD1 |

MFZOVITOR

## Overview of functions

| Function | Description | Setting options | Factory settings |
| :---: | :---: | :---: | :---: |
| POWER | Automatic power monitoring <br> (monitoring the rotational speed) <br> Error message if the door/gate is unable to move freely or is obstructed. <br> Setting the sensitivity for the OPEN direction of travel. <br> A reading giving the power value (rotational speed) is shown during opening and closing runs. <br> If the power monitoring facility is activated, a value must be set that is lower than the lowest value displayed during door/gate travel. The larger the difference compared to the lowest value displayed, the less sensitively the power monitoring reacts. The power monitoring facility is only activated if a numerical value is set. | $\begin{aligned} & \text { OFF } \\ & 1-999 \end{aligned}$ | 10 |
| RESET MSBUS | All MSBUS addresses assigned will be reset. <br> After restarting the control, all MSBUS devices connected will be re-addressed. <br> $\rightarrow$ Refer to the instruction manual for the MSBUS device for detailed information. | $\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$ | OFF |
| RESTART | Control is restarted if function is activated. | $\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$ | OFF |
| FACTORY SET. | Selecting the set of parameters that you want to reset to. <br> MOD10-MOD 98: Customer-specific <br> MOD99: MFZ standard | OFF MOD10-MOD99 | MOD99 |
| RESET | Reset the control parameters to the pre-set factory default settings <br> MOD2: Partial reset 2 (everything except the end positions / end position system) <br> MOD3: Total reset (everything is returned to factory default setting) | OFF, MOD2 - MOD3 | OFF |
| PIN NO. 2 | Input and selection of a PIN code for programming a maintenance interval. After entering the PIN code, the second programming level is opened. A maintenance interval can now be input at the parameter SERVICE. Input level 2 goes off again after the power has been switched off, or goes off automatically after 10 minutes. The PIN code can only be changed at the second programming level. | 0-9999 | 1111 |
| SERVICE | OFF: Maintenance indicator not activated <br> Setting a maintenance interval. After the pre-set number of door cycles has been carried out, a maintenance message (LED / LCD) is given. If a relay output is programmed to MOD31, the relay concerned is triggered (continuous signal). Only appears after input level 2 has been activated via parameter PIN NO. 2. | $\begin{aligned} & \text { OFF } \\ & 0-99999 \end{aligned}$ | OFF |

## Explanation of the relay modes:

## A. Traffic light functions

| MOD | Description | CLOSED end position | OPEN end position | Forewarning | Door run |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOD1 | Red traffic light $1^{3}$ | ON / OFF ${ }^{1}$ | OFF ${ }^{2}$ | Flashing | Lit up |
| MOD2 | Red traffic light $2^{3}$ | ON / OFF ${ }^{1}$ | OFF ${ }^{2}$ | Flashing | Flashing |
| MOD3 | Red traffic light $3{ }^{3}$ | ON / OFF ${ }^{1}$ | OFF ${ }^{2}$ | Lit up | Lit up |
| MOD18 | Red traffic light $4^{3}$ | OFF | OFF | Flashing | OFF |
| MOD23 | Green traffic light ${ }^{3}$ | OFF | $\mathrm{ON}{ }^{2}$ | OFF | OFF |
| MOD60 | Red traffic light $1^{4}$ | ON / OFF ${ }^{1}$ | OFF ${ }^{2}$ | Flashing | Lit up |
| MOD61 | Red traffic light $2^{4}$ | ON / OFF ${ }^{1}$ | OFF ${ }^{2}$ | Flashing | Flashing |
| MOD62 | Green traffic light ${ }^{4}$ | OFF | ON ${ }^{2}$ | OFF | OFF |

${ }^{1}$ Dependent on parameter TL REST
${ }^{2}$ If two-way traffic control is activated: dependent on inside or outside OPEN command
${ }^{3}$ If two-way traffic control is activated: traffic light inside
${ }^{4}$ If two-way traffic control is activated: traffic light outside
B. Position messages

| MOD | Description | Remarks |
| :---: | :---: | :---: |
| MOD6 | OPEN end position | The relay closes the contact when the door is at the OPEN end position. |
| MOD7 | CLOSED end position | The relay closes the contact when the door is at the CLOSED end position. |
| MOD8 | Not OPEN end position | The relay closes the contact when the door is not at the OPEN end position. |
| MOD9 | Not CLOSED end position | The relay closes the contact when the door is not at the CLOSED end position. |
| MOD10 | Intermediate OPEN position (Part OPEN) | The relay closes the contact when the door is at the intermediate OPEN position (part OPEN). |
| MOD11 | Intermediate CLOSE position (Part CLOSED) | The relay closes the contact when the door is at the intermediate CLOSE position (Part CLOSED). |
| MOD12 | Intermediate CLOSE position to CLOSED end position | The relay closes the contact when the door is in the area between the CLOSED end position and the intermediate CLOSE position (Part CLOSED). |
| MOD19 | Intermediate OPEN position to OPEN end position | The relay closes the contact when the door is in the area between the OPEN end position and the intermediate OPEN position (Part OPEN). |

MFZOVITOR

## Overview of functions

C. Impulse signals

| MOD | Description | Remarks |
| :--- | :--- | :--- |
| MOD4 | Impulse when OPEN command is given <br> from inside | The relay closes the contact for 1 second when the door receives an OPEN command from <br> inside. This impulse can be used to control lights, for instance. |
| MOD27Impulse when OPEN end position is <br> reached | The relay closes the contact for 2 seconds when the door reaches the OPEN end position. <br> This impulse can be used, for instance, to open a following photocell. |  |
| Impulse when OPEN command is given <br> from outside | The relay closes the contact for 1 second when the door receives an OPEN command from <br> outside. This impulse can be used to control lights, for instance. |  |

D. Error messages

| MOD | Description | Remarks |
| :--- | :--- | :--- |
| MOD5 | Error message | Closing edge safety device actuated |
| MOD17 | The relay opens the contact when a STOP command is given or an error occurs. <br> All errors described in Section 11 result in actuation of the relay. |  |
| The relay opens the contact when the closing edge safety device is actuated. An error in the <br> closing edge safety device or an unsuccessful test is shown via MOD5. |  |  |
| MOD39 | As with photocell input XP63 (1/2), the signal received is passed on in the form of a message. <br> Relay ON: Photocell signal is OK <br> Relay OFF: Light beam interrupted or fault in photocell |  |
| The relay always closes the contact when the internal error LED 2 (red) lights up. |  |  |

E. Movement signal

| MOD | Description | Remarks |
| :--- | :--- | :--- |
| MOD29 | Door OPENS. | Active during movement. |
| MOD30 | Door CLOSES. | Active during movement. |
| MOD43 | Door OPENS or CLOSES. | Active during every movement (triggering of a motor brake) |

## F. Functions for external accessories

| MOD | Description | Remarks |
| :---: | :---: | :---: |
| MOD13 | Magnetic lock function | The relay closes before each door movement. The relay is normally open. A delay of 0.5 seconds is programmed to elapse before each door movement takes place. |
| MOD21 | Test of draw-in protection | The relay generates a test signal when the CLOSED end position is reached and expects, as a reaction to the test signal, that the stop circuit is actuated. |
| MOD22 | Activation of radio transmission systems 1 and 4, testing of light curtain 1 | The relay generates a test signal when the OPEN end position is reached and expects, as a reaction to the test signal, that the closing edge safety device input is actuated. |
| MOD24 | Capacitor | Whenever a door movement command is given, the relay closes for approximately 1 second. With the aid of this relay, an additional starting capacitor that is required for AC applications is switched on, to ensure safe starting of the motor. For operators of the STAW range with increased duty cycle. |
| MOD25 | Yard light function | At every OPEN command, the relay is closed for 2 minutes and can therefore be used to control a light. |
| MOD26 | Activation of radio transmission systems 2 and 4 | Before every CLOSE command, the radio transmission system is activated by an impulse. The duration of the activation must be set on the transmission system. This activation results in a 0.5 second delay in starting. |
| MOD28 | Relay OFF | The relay is generally switched off; the contact is always open. |
| MOD36 | Pneumatic cylinder for locking the wicket door (threshold-less door system). | Every time an OPEN command is given, the relay is activated and controls a pneumatic cylinder which mechanically locks the wicket door that is incorporated in the door. The locking position of the cylinder is queried through a limit switch. The door starts moving only after this limit switch has been released. The relay remains activated until the lower end position has been reached again. |
| MOD37 | Testing of the stop signal via radio transmission systems 1 and 3 | The relay generates a test signal when the OPEN end position is reached and expects, as a reaction to the test signal, that the stop circuit is interrupted. |
| MOD38 | Testing light curtain $2(8.2 \mathrm{k} \Omega)$ Connection to input 2 (XP74 / 2+5) | The relay generates a test signal when the OPEN end position is reached and expects, as a reaction to the test signal, that there is an interruption to Input 2. |
| MOD 41 | Activation of radio transmission system 4 in the OPEN direction | The relay generates a test signal when the CLOSED end position is reached and expects, as a reaction to the test signal, that there is an interruption to Input 2. |

## G. Input-dependent messages

| MOD | Description | Remarks |
| :--- | :--- | :--- |
| MOD34 | BMA signal | Triggered if fire alarm system active. <br> Follows the signal at Input 1 if set to MOD5-9 / 13. <br> In this case, Input 1 is supplied wwith a control signal from the fire alarm system, and depending on <br> the setting, opens or closes the door to an end position or an intermediate position. |

MFZOVITOR

## Overview of functions

## Key to inputs:

A. Input 1 functions


| MOD | Description | Remarks |
| :---: | :---: | :---: |
| MOD9 | Fire alarm (BMA) switch 2 (emergency opening) NC | Control function if fire alarm system is active. <br> Closed: Normal operation <br> Open: Emergency opening of door <br> BUTTON: No function <br> LIGHT BARR / SKS: No function <br> STOP: Emergency closing interrupted as long as this is activated. <br> No automatic closing after deactivation of fire alarm signal. |
| MOD10 | Ventilation button NO | Partial opening of the door. When an additional button at Input 1 is pressed, the intermediate CLOSE position (Part CLOSED) is approached from either direction, irrespective of the current door position. |
| MOD11 | "Automatic closing" button | 1. Operation: No automatic closing; the open time continues. <br> 2. Operation: Automatic closing of the door is active again, if the open time is $>0$. <br> 3. Operation: No automatic closing; the open time continues. |
| MOD12 | Laser scanner (height detection) | Only in conjunction with Input 2 (MOD 6). <br> $\rightarrow$ See explanation regarding Input 2. |
| MOD13 | Fire alarm (BMA) switch 3 (partial opening) NC | Control function if fire alarm system is active. <br> Closed: Normal operation <br> Open: $\quad$ Partial opening of the door. The intermediate OPEN position (PART OPEN) is approached from either direction, irrespective of the current door position. <br> BUTTON: No function <br> LIGHT BARR / SKS: Door stops and briefly reverses (only in CLOSING direction), and closes again after 5 seconds <br> STOP: Emergency closing interrupted as long as this is activated. |
| MOD14 | Wicket door lock | Monitoring limit switch for the pneumatic lock system for wicket doors. The limit switch must confirm correct locking within 10 seconds of an OPEN command being given, otherwise the door remains stationary and an error message is given. <br> This function affects relay mode 36 . |
| MOD15 | Photocell 2 NC | If a second photocell is installed in the drive-through area of the door, this system can be programmed via the LB FUNC 2 parameter in INPUT mode. <br> Only photocells with a potential-free NC contact may be connected. |
| MOD16 | Forewarning switch | Closed: Start-up warning and forewarning are inactive <br> (even if both times are $>0$ ). <br> Open: Start-up warning and forewarning are active (only when both times are $>0$ ). <br> $\rightarrow " 10.2$ Input operating mode" on page 29  |
| MOD17 | Impulse button outside | Pressing the button moves or stops the door. <br> - The function and direction of the movement depend on the IMPULS parameter setting in the Input menu. <br> $\rightarrow$ "10.2 Input operating mode" on page 29 <br> - If two-way traffic control is activated, this impulse command is treated as a signal from outside. |
| MOD30 | OPEN button inside | When the button is pressed, the door opens as far as the OPEN end position. The traffic light inside changes to green. |
| MOD31 | OPEN button outside | When the button is pressed, the door opens as far as the OPEN end position. The traffic light outside changes to green. |
| MOD32 | CLOSE button | When the button is pressed, the door closes as far as the CLOSED end position. Only active with operational closing edge safety device and operational photocell 1. No function in deadman mode. |

MFZOVITOR

## Overview of functions

B. Input 2 functions

| MOD | Description | Remarks |
| :---: | :---: | :---: |
| OFF |  | Not active |
| MOD2 | Wicket door sensor (8.2 k $\Omega$ ) | Generally active Stops the system when actuated. |
| MOD3 | Closing edge safety device OPEN ( $8.2 \mathrm{k} \Omega$ ) | Closing edge safety device active in the OPEN direction Door stops and reverses to the CLOSED end position when the closing edge safety device is triggered. |
| MOD4 | Closing edge safety device OPEN $\text { (8.2 k } \Omega \text { ) }$ | Closing edge safety device active in the OPEN direction Door stops and moves in the CLOSE direction for 2 seconds (short reverse) when the closing edge safety device is triggered. |
| MOD6 | Radar motion detector (height detection) NO | The function is coupled to Input 1 (MOD12 - laser scanner). <br> The preceding laser scanner detects the height of the vehicle. <br> The installed radar motion detector generates an OPEN command when actuated. <br> - A tall vehicle (lorry) will be detected by the laser scanner. <br> The laser scanner switches Input 1 (MOD12) to ON. <br> The radar motion detector records the vehicle and triggers the door movement. <br> The door is moved to the OPEN end position. <br> - A lower vehicle (car) is recognised by the laser scanner. <br> The laser scanner switches Input 1 (MOD12) to OFF. <br> The radar motion detector records the vehicle and triggers the door movement. <br> The door is moved to the intermediate OPEN position (Part OPEN). <br> All other OPEN commands (via XB50, XB11, XB72) always move the door to the OPEN end position. <br> The Input 1 function (MOD12) then has no effect. |
| MOD7 | Light curtain 2 (PNP) | Acts in same way as light curtain 1 (SKS MOD 4-6) <br> - Light curtain active in the CLOSE direction. <br> - Stop and reverse when the light curtain is triggered. <br> The type of reversing (reverse / short reversal) is also adopted. |

### 10.3 Diagnosis / error memory operating mode



| Display | Meaning | Status |  |
| :---: | :---: | :---: | :---: |
| UPPER SWITCH | OPEN end position | OFF: <br> ON: | End position reached End position not reached |
| LOWER SWITCH | CLOSED end position | $\begin{aligned} & \text { OFF: } \\ & \text { ON: } \end{aligned}$ | End position reached End position not reached |
| OPEN BUTTON | Command button / OPEN input | ON: OFF: | Button activated / input is active Button not activated / input not active |
| CLOSE BUTTON | Command button / CLOSE input | ON: <br> OFF: | Button activated / input is active Button not activated / input not active |
| INPUT 1 | INPUT 1 (XB99 / 1+2) | ON: OFF: | Input 1 active Input 1 not active |
| INPUT 2 | INPUT 2 (XP74 / 2+5) | ON: <br> OFF: <br> Display | Input 2 active <br> Input 2 not active <br> / OFF only if set to MOD5 / MOD6 in parameter INPUT 2. |
| SKS | Closing edge safety device 1 (PS switch, $8.2 \mathrm{k} \Omega$ or optosensor) or light curtain 1 <br> (PNP or optosensor) <br> (XP74 / 1-3) CLOSING direction | ON: <br> OFF: | System closed <br> System interrupted (fault) |
| SKS 2 | Closing edge safety device $2(8.2 \mathrm{k} \Omega)$ or light curtain 2 (PNP) Connection to Input 2 (XP74 / 2+5) OPEN direction | ON: <br> OFF: <br> Display | System closed <br> System interrupted (fault) <br> / OFF only if set to MOD3 / MOD4 / MOD7 in parameter INPUT 2 |
| STOP 2 | Safety circuit 2 <br> Wicket door sensor ( $8.2 \mathrm{k} \Omega$ ) <br> Connection to INPUT 2 (XP74 / 2+5) | ON: <br> OFF: <br> Display | Safety circuit closed <br> Safety circuit interrupted (fault) <br> / OFF only if set to MOD2 in parameter INPUT 2. |
| IMPULS | Command button / IMPULSE input (INPUT 1 - MOD17-XB99 / 1+2) | ON: <br> OFF: | Button activated / input is active Button not activated / input not active |
| SWITCH CLOCK | Weekly timer (Input 1 - MOD4 - XB99 / 1+2) | ON: OFF: | Timer activated Timer not activated |
| LIGHT BARR. | Drive-through photocell 1 (XP63 / 1+2) | ON: OFF: | Photocell signal is OK <br> Light beam interrupted or fault in photocell |
| LIGHT BARR. 2 | Drive-through photocell 2 Connection to Input 1 (XB99 / 1+2) | ON: <br> OFF: | Photocell signal is OK Light beam interrupted or fault in photocell |
| SAFETY CIRC. | Safety circuit 1 <br> Emergency stop systems of door system | ON: OFF: | Safety circuit closed <br> Safety circuit interrupted |
| STOP | STOP command button (keypad on cover) | ON: OFF: | Button not activated Button activated |
| ROT FIELD | Shows currently set rotational direction of door operator | RIGHT: <br> LEFT: | Setting for clockwise rotating field Setting for anticlockwise rotating field |

MFZOVITOR

## Overview of functions

| Display | Meaning | Status |
| :---: | :---: | :---: |
| CYCLE | Door cycle counter | Displays number of door cycles counted so far $1 \times$ OPEN $+1 \times$ CLOSE $=1$ cycle Counts only if the travel cut-out points are reached. |
| SERVICE | Service alarm function Service alarm function parameters SERVICE and PIN NO. 2 | OFF: Maintenance indicator not activated <br> 0-99999: Maintenance indicator activated <br> Displays the number of door cycles left until a maintenance message is sent. |
| AWG | Shows position information of absolute value encoder | Displays the current transmitted value. |
| ERROR ... <br> COUNT <br> CYCLE | Control unit error memory <br> Error messages from the control unit can be read out here with information on the frequency and cycle. <br> The list of error messages can be scrolled through using buttons [+] and [-] on the LCD monitor. <br> $\rightarrow$ "11.1 Error message shown on LCD monitor" <br> Deleting the error log: <br> Press buttons [+] and [ - ] at the same time for approximately 2 seconds. Every error message must be individually deleted. | The display changes every 2 seconds to show the following in turn: <br> - the error description, <br> - the frequency of occurrence and <br> - the cycle in which the error last occurred. <br> The list contains only errors which have already occurred before. |

## 11. Error messages and rectification

### 11.1 Error message shown on LCD monitor

| Fault / error message | Cause | Rectification |
| :---: | :---: | :---: |
| System does not respond | - No voltage supply. | - Check the voltage supply to the door operator and the control. |
| Door travels to the CLOSED end position when the OPEN button is pressed <br> Door travels to the OPEN end position when the CLOSE button is pressed | - Rotating field is connected wrongly. | - Check the rotating field and set direction to clockwise, if necessary. |
| FAULT - X | - internal software or hardware fault. | - RESET using the circuit board buttons: <br> $\rightarrow$ " 8.5 RESETTING the control without an LCD monitor (only using internal circuit board buttons)" |
| SAFETY CIRC. | - The safety circuit is interrupted. <br> XR51 / 1+2 Control safety circuit EMERGENCY OFF, slack rope switch <br> XV32 / 4+8 Safety circuit of door operator AWG <br> XV36 / 4+8 Safety circuit of door operator MEC <br> XB50 / 1+2 External stop button | - Check safety circuit, localise interruption and rectify problem. |
| ERROR RUNTIME | - The programmed running time has been exceeded. | - Check the path of the door and the running time. <br> - Re-programme the running time, if necessary. |
| ERROR AWG | - Signal transmission between absolute value encoder and control interrupted and/or broken down. | - Check the cable and socket connections and replace, if necessary. |
| TERM SWITCH FAIL | - The door has travelled beyond the programmed end position area. <br> - The end positions have not yet been programmed. | - Move the door/gate back into the programmed area using the emergency operation facility. <br> - First, programme the end positions. |
| ERROR REVOLUTION | - The power monitoring has been triggered. | - Check the door for any mechanical impairment or damage. |
| ERROR DIRECTION | - The rotating field present is not a clockwise rotating field. | - Check the rotating field and change the direction, if necessary. <br> "6.1 Checking the direction of rotation/direction of travel" |
| ERROR SKS CLS. | - Closing edge safety device 1 is faulty in the CLOSING direction $->$ (XP74 / 1-3). | - Check the closing edge safety device and the spiral cable. |
| ERROR SKS OPEN 2 | - Closing edge safety device 2 is faulty in the OPEN direction $\rightarrow$ (XP74 / 2+5) input 2 | - Check the closing edge safety device and the spiral cable. |
| ERROR STOP 2 | - Safety circuit 2 is interrupted. | - Check wicket door sensor. |

## MFZOVITOR

Error messages and rectification

| Fault / error message | Cause | Rectification |
| :---: | :---: | :---: |
| ERROR SKS-TEST | - Testing of attached airwave bar was unsuccessful. | - Check the PS pressure switch, spiral cable and rubber profile. <br> - Check the PS POINT setting. |
|  | - Test of radio transmission systems 1-4 failed. | - Check the radio transmission system. <br> - Check whether the right relay MOD was selected for the transmission system. <br> $\rightarrow$ "F. Functions for external accessories" on page 37 |
| ERROR LIGHT BAR | - The installed photocell indicates a permanent fault. $->(X 4 / 1-4)$ | - Check photocell (function and alignment). <br> - Check cabling. |
| ERROR LIGHT BAR 2 | - The installed photocell indicates a permanent fault. $\rightarrow($ XB99 / 1+2) input 1 | - Check photocell (function and alignment). <br> - Check cabling. |
| ERROR LB TEST | - Test of two-wire photocell failed. | - Check photocell (function and alignment). <br> - Check cabling. |
| ERROR STOP-TEST | - Test of wicket door sensor ( $8.2 \mathrm{k} \Omega$ ) failed. -> Input 2 | - Check wicket door sensor. |
| ERROR TRAPIN | - Draw-in protection test (additional module) failed. -> Relay MOD21 | - Check photocell (function and alignment). <br> - Check cabling. |
| ERROR CYLINDER | - The monitoring limit switch for the lock system for threshold-less wicket doors has failed to trigger within 10 seconds of an OPEN command being given. | - Check limit switch of cylinder. |
| ERROR MSBUS | - Communication between the control and the MS BUS module attached is interrupted. | - Check the cable and socket connections and replace, if necessary. |
| ERROR POWERSEGM. | - One of the relays that controls the motor is faulty. | - Change the PCB. |

After rectifying the cause of the error, the power supply to the control must be turned off once and/or the control must be restarted (> INPUT menu > parameter RESTART > ON) in the event of the following errors

- ERROR DIRECTION
- ERROR RUNTIME
- TERM SWITCH FAIL


### 11.2 Error message via LED indicator

## LED H1 - Green

| Fault / error message | LED indicator | Remarks |
| :--- | :--- | :--- |
| No operating voltage | Off | No power supply present. |

LED H2 - Red

| Fault / error message | LED indicator | Remarks |
| :---: | :---: | :---: |
| SAFETY CIRC. | Flashes 1 x | Safety circuit is interrupted. <br> - Check safety circuit, localise interruption and rectify problem. |
| ERROR AWG | Flashes 2 x | Signal transmission between absolute value encoder and control interrupted and/or broken down. <br> - Check the cable and socket connections and replace, if necessary. |
| TERM SWITCH FAIL | Flashes 3 x | The door/gate system has travelled beyond the programmed end position area or the end positions have not yet been programmed. <br> - First, programme the end positions. <br> - Move the door/gate back into the programmed area using the emergency operation facility. |
| ERROR DIRECTION | Flashes 4x | The rotating field present is not a clockwise rotating field. <br> - Check the rotating field and change the direction, if necessary. <br> $\rightarrow$ "6.1 Checking the direction of rotation/direction of travel" |
| ERROR REVOLUTION | Flashes 5x | The power monitoring has been triggered. <br> - Check the door for any mechanical impairment or damage. |
| ERROR RUNTIME | Flashes 6 x | The programmed running time has been exceeded. <br> - Check the path of the door and the running time. <br> - Re-programme the running time, if necessary. |
| ERROR MSBUS | Flashes 9x | Communication error between the control and the installed MS BUS end device. <br> - Check the cable and socket connections and replace, if necessary. |
| ERROR SKS | Continuous light <br> Travel only possible in deadman mode | Closing edge safety device faulty in OPENING or CLOSING direction. <br> - Check the closing edge safety device and the spiral cable and, if necessary, Check the RADIO transmission system. |
| ERROR LIGHT BAR | Continuous light <br> Travel in CLOSING direction only possible in deadman mode | The installed photocell indicates a permanent fault. <br> - Check photocell (function and alignment). <br> - Check cabling. |

## MFZOVITOR

## 12. Technical data

### 12.1 Mechanical and electrical data

| Housing dimensions: | $165 \times 220 \times 105 \mathrm{~mm}$ |
| :---: | :---: |
| Power supply via |  |
| L1, L2, L3, N, PE: | $\begin{aligned} & 400 \mathrm{~V} / 3 \sim, 50 / 60 \mathrm{~Hz} \\ & 230 \mathrm{~V} / 3 \sim, 50 / 60 \mathrm{~Hz} \end{aligned}$ |
| L1, N, PE: | 230V/1~, 50/60Hz |
| Fuse protection: | 10 A K type |
| Motor rating: | max. 1.5 kW <br> or 5 A power consumption for power supply 400V/3~ |
| Internal consumption of the control: | max. 200 mA (only PCB) |
| Control voltage: | 24 V DC, max. 200 mA ; protected by self-resetting fuse for external sensor systems. |
| Control inputs: | 24 VDC , all inputs must be connected so that they are potential-free. <br> Minimum signal duration for input control command > 100 ms |
| Control outputs: | 24 V DC, max. 200 mA |
| RS485 A and B : | Only for electronic limit switches RS485 level, terminated with $120 \Omega$ |
| Safety circuit / <br> Emergency stop: | All input connections MUST be potential-free; if the safety circuit is interrupted, no further electrically powered movement of the operator is possible, not even in deadman mode |
| Closing edge safety device input: | Performance level C for electrical closing edge safety devices with $8.2 \mathrm{k} \Omega$ terminating resistor and for dynamic optical systems |
| Photocell (performance level D): | If the photocell is used as a $D$ performance level protection system, it must be checked at regular intervals - at least every 6 months - to ensure that the system is working properly. MFZ two-wire photocell barriers have a self teachin facility, and so this requirement does not apply in this case. |
| Display (LCD): | Only an original MFZ LCD monitor may be used (article number 121246). |
| Relay outputs: | If inductive loads are connected (e.g. further relays or brakes), these must be equipped with suitable interference suppression (such as recovery diode, varistors or RC circuits). Potential-free normally open contact; min. 10 mA ; max. $230 \mathrm{~V} \mathrm{ac} \mathrm{/} \mathrm{4A}$. Once contacts have been used for power circuits, they can no longer be used for extra-low current circuits. |


| Temperature range: | Operation: $-10^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$ <br> Storage: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Air humidity: | Up to $80 \%$ with no condensation |
| Vibrations: | Low-vibration mounting, e.g. on a masonry wall |
| Protection grade: | IP 65 |
| Weight: | approx. 1.5 kg |

### 12.2 Functional safety category and performance level according to EN ISO 13849-1

The safety-related inputs correspond to performance level "c" and category 2.

The CS 255 AC control is maintenance-free.

## DANGER!

Life-threatening danger due to electric shock!
The control unit or door system MUST be disconnected from the electricity supply before carrying out any electrical work! Take measures to ensure that the power supply remains disconnected for the duration of the work.

The following points must be taken into account when carrying out maintenance on the door system:

- Maintenance must only be carried out by authorised persons.
- Directive ASR A1.7 must be complied with.
- Worn or faulty parts must be replaced.
- Only approved parts may be installed.
- All maintenance work must be documented.
- Replaced faulty parts must be disposed of properly in accordance with the materials they contain and local regulations.


## 14. Declaration of Incorporation

We hereby declare that the product described below:

## CS 255 AC Gate Control

is in conformity with all essential requirements of the Machinery Directive (2006/42/EC).

In addition, the incomplete machine is in conformity with all regulations of the

- Electromagnetic Compatibility Directive (2014/30/EU)
- Low Voltage Directive (2014/35/EU)

The following standards were applied:

EN 60204-1
Safety of machinery, electrical equipment of machines; Part 1: General requirements

EN ISO 12100
Safety of machinery - general principles for design risk assessment and risk reduction

DIN EN 12453
Safety in use of power operated doors - Requirements
prEN 12453: 2014
Safety in use of power operated doors
(exclusively for items 1.3.7 and 1.4.3 of Annex I of the Machinery Directive)

DIN EN 61000-6-2
Electromagnetic compatibility (EMC) -
Part 6-2: Generic standards - Immunity for industrial environments

## DIN EN 61000-6-3

Electromagnetic compatibility (EMC) -
Part 6-3: Generic standards - Emission - standard for residential, commercial and light-industrial environments

DIN EN 60335-1
Household and similar electrical appliances - Safety Part 1: General requirements

DIN EN 60335-2-103
Household and similar electrical appliances - Safety Part 2-103: Particular requirements for drives for gates, doors and windows

## EN 12978

Industrial, commercial and garage doors and gates - Safety devices for power operated doors and gates - Requirements and test methods

EN ISO 13849-1
Safety of machinery - Safety-related parts of control systems Part 1: General principles for design

The relevant technical documentation is compiled in accordance with Annex VII (B) of the EC Machinery Directive 2006/42/EC. We undertake to transmit, in response to a reasoned request by the market surveillance authorities, this information in electronic form within a reasonable term.

EC type examination certificate No. 4420515039003
TÜV NORD CERT GmbH (NB 0044)
Langemarckstrasse 20
D - 45141 Essen, Germany

Person authorised to compile the relevant technical documentation:
MFZ Antriebe GmbH \& Co. KG, Neue Mühle 4 D-48739 Leyden, Germany

The machine must not be put into service until the machinery into which the logic unit is to be incorporated has been declared in conformity with the provisions of the Machinery Directive (2006/42/EC).

## Place / Date

Legden, 02/01/2017

## Manufacturer's signature



Dirk Wesseling

Position of signatory
Management

## 15. Appendix

### 15.1 Overview of connections



Relay output, potential-free contact NO

CSI-15 external input unit




Photocell relay output


Three-wire NPN photocell


Three-wire PNP photocell



OPTO closing edge safety device


[^0]:    gr: green Signal output
    br: brown 12 V -DC
    ws: white GND

[^1]:    * The resistor ( $30 \mathrm{k} \Omega$ ) is included in the supply package.

